کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2600434 1133264 2011 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Involvement of oxidative stress-mediated ERK1/2 and p38 activation regulated mitochondria-dependent apoptotic signals in methylmercury-induced neuronal cell injury
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم محیط زیست بهداشت، سم شناسی و جهش زایی
پیش نمایش صفحه اول مقاله
Involvement of oxidative stress-mediated ERK1/2 and p38 activation regulated mitochondria-dependent apoptotic signals in methylmercury-induced neuronal cell injury
چکیده انگلیسی

Methylmercury (MeHg) is well-known for causing irreversible damage in the central nervous system as well as a risk factor for inducing neuronal degeneration. However, the molecular mechanisms of MeHg-induced neurotoxicity remain unclear. Here, we investigated the effects and possible mechanisms of MeHg in the mouse cerebrum (in vivo) and in cultured Neuro-2a cells (in vitro). In vivo study showed that the levels of LPO in the plasma and cerebral cortex significantly increased after administration of MeHg (50 μg/kg/day) for 7 consecutive weeks. MeHg could also decrease glutathione level and increase the expressions of caspase-3, -7, and -9, accompanied by Bcl-2 down-regulation and up-regulation of Bax, Bak, and p53. Moreover, treatment of Neuro-2a cells with MeHg significantly reduced cell viability, increased oxidative stress damage, and induced several features of mitochondria-dependent apoptotic signals, including increased sub-G1 hypodiploids, mitochondrial dysfunctions, and the activation of PARP, and caspase cascades. These MeHg-induced apoptotic-related signals could be remarkably reversed by antioxidant NAC. MeHg also increased the phosphorylation of ERK1/2 and p38, but not JNK. Pharmacological inhibitors NAC, PD98059, and SB203580 attenuated MeHg-induced cytotoxicity, ERK1/2 and p38 activation, MMP loss, and caspase-3 activation in Neuro-2a cells. Taken together, these results suggest that the signals of ROS-mediated ERK1/2 and p38 activation regulated mitochondria-dependent apoptotic pathways that are involved in MeHg-induced neurotoxicity.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Toxicology Letters - Volume 204, Issue 1, 4 July 2011, Pages 71–80
نویسندگان
, , , , , , , , , , , ,