کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
283944 1430652 2007 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Research into a Feature Selection Method for Hyperspectral Imagery Using PSO and SVM
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات زمین شناسی اقتصادی
پیش نمایش صفحه اول مقاله
Research into a Feature Selection Method for Hyperspectral Imagery Using PSO and SVM
چکیده انگلیسی

Classification and recognition of hyperspectral remote sensing images is not the same as that of conventional multi-spectral remote sensing images. We propose, a novel feature selection and classification method for hyperspectral images by combining the global optimization ability of particle swarm optimization (PSO) algorithm and the superior classification performance of a support vector machine (SVM). Global optimal search performance of PSO is improved by using a chaotic optimization search technique. Granularity based grid search strategy is used to optimize the SVM model parameters. Parameter optimization and classification of the SVM are addressed using the training date corresponding to the feature subset. A false classification rate is adopted as a fitness function. Tests of feature selection and classification are carried out on a hyperspectral data set. Classification performances are also compared among different feature extraction methods commonly used today. Results indicate that this hybrid method has a higher classification accuracy and can effectively extract optimal bands. A feasible approach is provided for feature selection and classification of hyperspectral image data.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of China University of Mining and Technology - Volume 17, Issue 4, December 2007, Pages 473-478