کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
303956 | 512766 | 2015 | 11 صفحه PDF | دانلود رایگان |
• A simplified soil–pipe interaction model is presented for fault crossing problems.
• Critical length of the pipe is determined from.
• Axial load developments in the pipe due to stretching are considered.
The seismic response analysis of buried pipelines at fault crossings is a complex problem requiring nonlinear 3D soil-structure and large deformation analyses. Such analyses are computationally expensive and the results are hard to evaluate. Therefore, a simple numerical model is needed for engineering and design offices to determine the seismic demand of steel pipes at fault crossings. This paper presents a simplified numerical model for buried steel pipes crossing strike-slip faults and oriented perpendicular to the fault. Two pipes with different diameter to thickness (D/t) ratios and steel grades are used in the study. The proposed model permits plastic hinge formations in the pipe due to incrementally applied fault movements, allows determination of the critical length of the pipeline and measure strains developed on the tension and compression sides in the pipe. The model also considers the effect of bending as well as axial strains due to stretching.
Journal: Soil Dynamics and Earthquake Engineering - Volume 75, August 2015, Pages 55–65