کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
304639 | 512817 | 2011 | 10 صفحه PDF | دانلود رایگان |

Displacement spectrum intensity (DSI), defined as the integral of a ground motion's displacement response spectrum from 2.0 to 5.0 s, is proposed as an indicator of the severity of the long period content of a ground motion. It is demonstrated how the distribution of DSI can be predicted using existing ground motion prediction equations for (pseudo) spectral accelerations, which is necessary for it to be a useful intensity measure (IM) in either probabilistic or deterministic seismic hazard analysis. Empirical correlation equations between DSI and other common ground motion IMs are developed for active shallow crustal earthquakes using a dataset of ground motions from active shallow crustal earthquakes. The ability of DSI to account for near-source ground motions exhibiting forward directivity, potentially damaging far-source long-period ground motion, and its use with other spectrum intensity parameters to characterise short, medium, and long period severity of ground motions is discussed. The developed ground motion prediction and correlation equations enable DSI to be utilised in rigorous ground motion selection frameworks such as the generalised conditional intensity measure (GCIM) approach.
► New ground motion intensity measure Displacement spectrum intensity (DSI) presented.
► Ground motion prediction equation for DSI developed.
► Empirical correlation equations between DSI and other intensity measures developed.
Journal: Soil Dynamics and Earthquake Engineering - Volume 31, Issue 8, August 2011, Pages 1182–1191