کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4178334 | 1276488 | 2011 | 9 صفحه PDF | دانلود رایگان |

BackgroundCognitive control impairments in schizophrenia are thought to arise from dysfunction of interconnected networks of brain regions, but interrogating the functional dynamics of large-scale brain networks during cognitive task performance has proved difficult. We used functional magnetic resonance imaging to generate event-related whole-brain functional connectivity networks in participants with first-episode schizophrenia and healthy control subjects performing a cognitive control task.MethodsFunctional connectivity during cognitive control performance was assessed between each pair of 78 brain regions in 23 patients and 25 control subjects. Network properties examined were region-wise connectivity, edge-wise connectivity, global path length, clustering, small-worldness, global efficiency, and local efficiency.ResultsPatients showed widespread functional connectivity deficits in a large-scale network of brain regions, which primarily affected connectivity between frontal cortex and posterior regions and occurred irrespective of task context. A more circumscribed and task-specific connectivity impairment in frontoparietal systems related to cognitive control was also apparent. Global properties of network topology in patients were relatively intact.ConclusionsThe first episode of schizophrenia is associated with a generalized connectivity impairment affecting most brain regions but that is particularly pronounced for frontal cortex. Superimposed on this generalized deficit, patients show more specific cognitive-control-related functional connectivity reductions in frontoparietal regions. These connectivity deficits occur in the context of relatively preserved global network organization.
Journal: Biological Psychiatry - Volume 70, Issue 1, 1 July 2011, Pages 64–72