کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4462939 1621580 2006 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Contribution of laser ranging to Earth's sciences
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات علوم زمین و سیاره ای (عمومی)
پیش نمایش صفحه اول مقاله
Contribution of laser ranging to Earth's sciences
چکیده انگلیسی

Satellite and Lunar Laser Ranging (SLR and LLR, respectively) are based on a direct measurement of a distance by exactly measuring the time transit of a laser beam between a station and a space target. These techniques have proven to be very efficient methods for contributing to the tracking of both artificial satellites and the Moon, and for determining accurately their orbit and the associated geodynamical parameters, although hampered by the non-worldwide coverage and the meteorological conditions. Since more than 40 years, the French community (today ‘Observatoire de la Côte d'Azur’, CNES, ‘Observatoire de Paris’, and IGN) is largely involved in the technological developments as well as in the scientific achievements. The role of the laser technique has greatly evolved thanks to the success of GPS and DORIS; the laser technique teams have learnt to focus their effort in fields where this technique is totally specific and irreplaceable.The role of SLR data in the determination of terrestrial reference systems and in the modelling of the first terms of the gravity field (including the terrestrial constant GM that defines the scale of orbits) has to be emphasized, which is of primary importance in orbitography, whatever the tracking technique used. In addition, the role of LLR data (with two main stations, at Mac Donald (United States) and Grasse (France), since 30 years) has been of particular importance for improving solar system ephemeris and contributing to some features of fundamental physics (equivalence principle). Today, the role of the SLR technique is (i) to determine and to maintain the scale factor of the global terrestrial reference frame, (ii) to strengthen the vertical component (including velocity) of the positioning, which is crucial for altimetry missions and tectonic motions, (iii) to locate the geocenter with respect to the Earth's crust, (iv) to avoid any secular and undesirable drift of geodetic systems thanks to a very good accuracy.Now, the future of this technique is to enlarge the technical capability of laser ranging stations for long distances, that is the tracking of space targets orbiting through the Solar System. In addition, the laser technique should participate into time transfer experiments and improve, with mobile systems like the FTLRS and the new SLR2000 concept, the coverage of the international laser network (ILRS). To cite this article: P. Exertier et al., C. R. Geoscience 338 (2006).

RésuméDe par le caractère exact de la mesure de distance (mesure d'un temps de vol aller–retour d'une impulsion lumineuse ultra-courte, avec des étalons de temps–fréquence stables sur les durées considérées), la technique de télémétrie laser, appliquée tant sur les satellites artificiels de la Terre que sur la Lune, a permis de déterminer de manière exacte de nombreux paramètres géodynamiques et géocinétiques, ainsi que l'étalonnage de nombreux systèmes embarqués. Le développement de la télémétrie laser a été soutenu depuis 40 ans, dans le cadre d'instituts nationaux puis du GRGS, par l'observatoire de la Côte d'Azur, le CNES, l'Observatoire de Paris et l'IGN. Il faut souligner qu'après les années 1990, le développement des nouvelles méthodes radioélectriques de type tout temps, GPS et DORIS notamment, a amené la télémétrie laser à se recentrer et à faire émerger les domaines spécifiques de la géodésie spatiale, où elle joue un rôle irremplaçable.La télémétrie laser a joué et joue un rôle essentiel dans la détermination des références géodésiques mondiales et dans la modélisation des premiers termes du champ de gravité (avec notamment la détermination précise de la constante gravitationnelle terrestre GM qui fixe l'échelle spatiale des orbites). En outre, depuis 30 ans, le laser Lune (stations de Mac Donald aux États-Unis et de Grasse en France) fournit des données uniques pour améliorer les éphémérides des corps du Système solaire et pour des applications en physique fondamentale (principe d'équivalence). Aujourd'hui, le rôle spécifique de la technique laser est de déterminer et maintenir les références verticales mondiales, si importantes pour l'altimétrie des océans, de positionner le géocentre par rapport à la croûte terrestre et d'étalonner de nombreux systèmes embarqués pour éviter des dérives, toujours possibles.Les enjeux futurs liés à la technique laser vont du transfert de temps dans l'espace proche de la Terre à une contribution attendue sur des distances de plusieurs millions de kilomètres dans le Système solaire. En outre, la place de la station laser ultra-mobile française et de tout autre système largement déployable sur le globe (comme le système SLR2000 américain) devrait permettre d'obtenir un réseau plus homogène, dont l'efficacité sera assurée par le service international laser (ILRS). Pour citer cet article : P. Exertier et al., C. R. Geoscience 338 (2006).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Comptes Rendus Geoscience - Volume 338, Issues 14–15, November–December 2006, Pages 958–967
نویسندگان
, , , , , , ,