کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4486098 | 1316975 | 2007 | 12 صفحه PDF | دانلود رایگان |

In this study, we used isotopic (δ18O, δ2H, δ34S-SO4) and chemical tracers (boron) to assess the sources and transport processes of the micropollutants carbamazepine, galaxolide, and bisphenol A in groundwater underlying the city of Halle (Saale), Germany. Their ubiquitous presence in urban groundwater results from a combination of local river water infiltration, sewer exfiltration, and urban stormwater recharge. Attenuation during transport with infiltrating river water increased from carbamazepine (0–60%) to galaxolide (60–80%) in accordance with their increasing sorption affinity and decreasing recalcitrance against biodegradation. Distinctly higher attenuation during transport was found for carbamazepine (85–100%) and galaxolide (95–100%) if micropollutants originated from sewer exfiltration. Most likely, this is related to higher contents of organic matter and higher transit times of the respective flow paths. Although attenuation undoubtedly also affects the transport of bisphenol A, quantification is limited due to additional contributions from the urban stormwater recharge. As a consequence, micropollutant loads in groundwater indicate that groundwater discharge may dominate the export of bisphenol A from urban areas.
Journal: Water Research - Volume 41, Issue 15, August 2007, Pages 3259–3270