کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4637743 1631980 2017 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The proximal alternating iterative hard thresholding method for l0l0 minimization, with complexity O(1/k)
ترجمه فارسی عنوان
روش آستانه سخت تکراری جایگزین پروگزیمال برای کمینه کردن 010، با پیچیدگی O (1 / k)
کلمات کلیدی
تقریب پراکنده؛ بهینه سازی متناوب؛ آستانه سخت؛ قاب موجک تنگ؛ ویژگی Kurdyka-Łojasiewicz
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
چکیده انگلیسی

Since digital images are usually sparse in the wavelet frame domain, some nonconvex minimization models based on wavelet frame have been proposed and sparse approximations have been widely used in image restoration in recent years. Among them, the proximal alternating iterative hard thresholding method is proposed in this paper to solve the nonconvex model based on wavelet frame. Through combining the proposed algorithm with the iterative hard thresholding algorithm which is well studied in compressed sensing theory, this paper proves that the complexity of the proposed method is O(1/k). On the other hand, a more general nonconvex–nonsmooth model is adopted and the pseudo proximal alternating linearized minimization method is developed to solve the above problem. With the Kurdyka–Łojasiewicz (KL) property, it is proved that the sequence generated by the proposed algorithm converges to some critical points of the corresponding model. Finally, the proposed method is applied to restore the blurred noisy gray images. As the numerical results reveal, the performance of the proposed method is comparable or better than some well-known convex image restoration methods.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 311, February 2017, Pages 115–129
نویسندگان
, , ,