کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4638565 1632009 2015 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Minimal asymptotic error for one-point approximation of SDEs with time-irregular coefficients
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Minimal asymptotic error for one-point approximation of SDEs with time-irregular coefficients
چکیده انگلیسی
We consider strong one-point approximation of solutions of scalar stochastic differential equations (SDEs) with irregular coefficients. The drift coefficient a:[0,T]×R→R is assumed to be Lipschitz continuous with respect to the space variable but only measurable with respect to the time variable. For the diffusion coefficient b:[0,T]→R we assume that it is only piecewise Hölder continuous with Hölder exponent ϱ∈(0,1]. We show that, roughly speaking, the error of any algorithm, which uses n values of the diffusion coefficient, cannot converge to zero faster than n−min{ϱ,1/2} as n→+∞. This best speed of convergence is achieved by the randomized Euler scheme.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 282, July 2015, Pages 98-110
نویسندگان
,