کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4638812 | 1632013 | 2015 | 16 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Discrete Hessian Eigenmaps method for dimensionality reduction
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
For a given set of data points lying on a low-dimensional manifold embedded in a high-dimensional space, the dimensionality reduction is to recover a low-dimensional parametrization from the data set. The recently developed Hessian Eigenmaps method is a mathematically rigorous method that also sets a theoretical framework for the nonlinear dimensionality reduction problem. In this paper, we develop a discrete version of the Hessian Eigenmaps method and present an analysis, giving conditions under which the method works as intended. As an application, a procedure to modify the standard constructions of kk-nearest neighborhoods is presented to ensure that Hessian LLE can recover the original coordinates up to an affine transformation.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 278, 15 April 2015, Pages 197–212
Journal: Journal of Computational and Applied Mathematics - Volume 278, 15 April 2015, Pages 197–212
نویسندگان
Qiang Ye, Weifeng Zhi,