کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4638812 1632013 2015 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Discrete Hessian Eigenmaps method for dimensionality reduction
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Discrete Hessian Eigenmaps method for dimensionality reduction
چکیده انگلیسی

For a given set of data points lying on a low-dimensional manifold embedded in a high-dimensional space, the dimensionality reduction is to recover a low-dimensional parametrization from the data set. The recently developed Hessian Eigenmaps method is a mathematically rigorous method that also sets a theoretical framework for the nonlinear dimensionality reduction problem. In this paper, we develop a discrete version of the Hessian Eigenmaps method and present an analysis, giving conditions under which the method works as intended. As an application, a procedure to modify the standard constructions of kk-nearest neighborhoods is presented to ensure that Hessian LLE can recover the original coordinates up to an affine transformation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 278, 15 April 2015, Pages 197–212
نویسندگان
, ,