کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4639462 1632051 2013 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the convergence of a modified regularized Newton method for convex optimization with singular solutions
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
On the convergence of a modified regularized Newton method for convex optimization with singular solutions
چکیده انگلیسی

In this paper we propose a modified regularized Newton method for convex minimization problems whose Hessian matrices may be singular. The proposed method is proved to converge globally if the gradient and Hessian of the objective function are Lipschitz continuous. Under the local error bound condition, we first show that the method converges quadratically, which implies that ‖xk−x∗‖‖xk−x∗‖ is equivalent to dist(xk,X), where XX is the solution set and xk→x∗∈Xxk→x∗∈X. Then we in turn prove the cubic convergence of the proposed method under the same local error bound condition, which is weaker than nonsingularity.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 239, 1 February 2013, Pages 179–188
نویسندگان
, ,