کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4639548 | 1341238 | 2013 | 19 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A finite volume method for scalar conservation laws with stochastic time-space dependent flux functions
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We propose a new finite volume method for scalar conservation laws with stochastic time-space dependent flux functions. The stochastic effects appear in the flux function and can be interpreted as a random manner to localize the discontinuity in the time-space dependent flux function. The location of the interface between the fluxes can be obtained by solving a system of stochastic differential equations for the velocity fluctuation and displacement variable. In this paper we develop a modified Rusanov method for the reconstruction of numerical fluxes in the finite volume discretization. To solve the system of stochastic differential equations for the interface we apply a second-order Runge-Kutta scheme. Numerical results are presented for stochastic problems in traffic flow and two-phase flow applications. It is found that the proposed finite volume method offers a robust and accurate approach for solving scalar conservation laws with stochastic time-space dependent flux functions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 237, Issue 1, 1 January 2013, Pages 614-632
Journal: Journal of Computational and Applied Mathematics - Volume 237, Issue 1, 1 January 2013, Pages 614-632
نویسندگان
Kamel Mohamed, Mohammed Seaid, Mostafa Zahri,