کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4639583 1341241 2012 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An iterative adaptive finite element method for elliptic eigenvalue problems
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
An iterative adaptive finite element method for elliptic eigenvalue problems
چکیده انگلیسی

We consider the task of resolving accurately the nnth eigenpair of a generalized eigenproblem rooted in some elliptic partial differential equation (PDE), using an adaptive finite element method (FEM). Conventional adaptive FEM algorithms call a generalized eigensolver after each mesh refinement step. This is not practical in our situation since the generalized eigensolver needs to calculate nn eigenpairs after each mesh refinement step, it can switch the order of eigenpairs, and for repeated eigenvalues it can return an arbitrary linear combination of eigenfunctions from the corresponding eigenspace. In order to circumvent these problems, we propose a novel adaptive algorithm that only calls a generalized eigensolver once at the beginning of the computation, and then employs an iterative method to pursue a selected eigenvalue–eigenfunction pair on a sequence of locally refined meshes. Both Picard’s and Newton’s variants of the iterative method are presented. The underlying partial differential equation (PDE) is discretized with higher-order finite elements (hphp-FEM) but the algorithm also works for standard low-order FEM. The method is described and accompanied with theoretical analysis and numerical examples. Instructions on how to reproduce the results are provided.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 236, Issue 18, December 2012, Pages 4582–4599
نویسندگان
, ,