کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4639784 1341251 2012 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Using machine learning to predict catastrophes in dynamical systems
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Using machine learning to predict catastrophes in dynamical systems
چکیده انگلیسی

Nonlinear dynamical systems, which include models of the Earth’s climate, financial markets and complex ecosystems, often undergo abrupt transitions that lead to radically different behavior. The ability to predict such qualitative and potentially disruptive changes is an important problem with far-reaching implications. Even with robust mathematical models, predicting such critical transitions prior to their occurrence is extremely difficult. In this work, we propose a machine learning method to study the parameter space of a complex system, where the dynamics is coarsely characterized using topological invariants. We show that by using a nearest neighbor algorithm to sample the parameter space in a specific manner, we are able to predict with high accuracy the locations of critical transitions in parameter space.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 236, Issue 9, March 2012, Pages 2235–2245
نویسندگان
, , ,