کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4639920 | 1341253 | 2011 | 7 صفحه PDF | دانلود رایگان |

The efficiency of a finite element mass consistent model for wind field adjustment depends on the stability parameter αα which allows adjustment from a strictly horizontal wind to a pure vertical one. Each simulation with the wind model leads to the resolution of a linear system of equations, the matrix of which depends on a function ε(α)ε(α), i.e., (M+εN)xε=bε(M+εN)xε=bε, where MM and NN are constant, symmetric and positive definite matrices with the same sparsity pattern for a given level of discretization. The estimation of this parameter may be carried out by using genetic algorithms. This procedure requires the evaluation of a fitness function for each individual of the population defined in the searching space of αα, that is, the resolution of one linear system of equations for each value of αα. Preconditioned Conjugate Gradient algorithm (PCG) is usually applied for the resolution of these types of linear systems due to its good convergence results. In order to solve this set of linear systems, we could either construct a different preconditioner for each of them or use a single preconditioner constructed from the first value of εε to solve all the systems. In this paper, an intermediate approach is proposed. An incomplete Cholesky factorization of matrix AεAε is constructed for the first linear system and it is updated for each εε at a low computational cost. Numerical experiments related to realistic wind field are presented in order to show the performance of the proposed preconditioning strategy.
Journal: Journal of Computational and Applied Mathematics - Volume 235, Issue 8, 15 February 2011, Pages 2640–2646