کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4641448 1341309 2008 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Synchronization of neural networks based on parameter identification and via output or state coupling
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Synchronization of neural networks based on parameter identification and via output or state coupling
چکیده انگلیسی

For neural networks with all the parameters unknown, we focus on the global robust synchronization between two coupled neural networks with time-varying delay that are linearly and unidirectionally coupled. First, we use Lyapunov functionals to establish general theoretical conditions for designing the coupling matrix. Neither symmetry nor negative (positive) definiteness of the coupling matrix are required; under less restrictive conditions, the two coupled chaotic neural networks can achieve global robust synchronization regardless of their initial states. Second, by employing the invariance principle of functional differential equations, a simple, analytical, and rigorous adaptive feedback scheme is proposed for the robust synchronization of almost all kinds of coupled neural networks with time-varying delay based on the parameter identification of uncertain delayed neural networks. Finally, numerical simulations validate the effectiveness and feasibility of the proposed technique.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 222, Issue 2, 15 December 2008, Pages 440–457
نویسندگان
, ,