کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4641554 | 1341312 | 2009 | 15 صفحه PDF | دانلود رایگان |

The numerical simulation of viscoelastic fluid flow becomes more difficult as a physical parameter, the Weissenberg number, increases. Specifically, at a Weissenberg number larger than a critical value, the iterative nonlinear solver fails to converge, a phenomenon known as the high Weissenberg number problem. In this work we describe the application and implementation of continuation methods to the nonlinear Johnson–Segalman model for steady-state viscoelastic flows. Simple, natural, and pseudo-arclength continuation approaches in Weissenberg number are investigated for a discontinuous Galerkin finite element discretization of the equations. Computations are performed for a benchmark contraction flow and, several aspects of the performance of the continuation methods including high Weissenberg number limits, are discussed.
Journal: Journal of Computational and Applied Mathematics - Volume 225, Issue 1, 1 March 2009, Pages 187–201