کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4642439 | 1341343 | 2007 | 11 صفحه PDF | دانلود رایگان |

Mixed boundary value problems are characterised by a combination of Dirichlet and Neumann conditions along at least one boundary. Historically, only a very small subset of these problems could be solved using analytic series methods (“analytic” is taken here to mean a series whose terms are analytic in the complex plane). In the past, series solutions were obtained by using an appropriate choice of axes, or a co-ordinate transformation to suitable axes where the boundaries are parallel to the abscissa and the boundary conditions are separated into pure Dirichlet or Neumann form. In this paper, I will consider the more general problem where the mixed boundary conditions cannot be resolved by a co-ordinate transformation. That is, a Dirichlet condition applies on part of the boundary and a Neumann condition applies along the remaining section. I will present a general method for obtaining analytic series solutions for the classic problem where the boundary is parallel to the abscissa. In addition, I will extend this technique to the general mixed boundary value problem, defined on an arbitrary boundary, where the boundary is not parallel to the abscissa. I will demonstrate the efficacy of the method on a well known seepage problem.
Journal: Journal of Computational and Applied Mathematics - Volume 209, Issue 1, 1 December 2007, Pages 22–32