کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4643118 | 1341368 | 2006 | 10 صفحه PDF | دانلود رایگان |

We consider a quasistatic problem which models the bilateral contact between a viscoelastic body and a foundation, taking into account the damage and the friction. The damage which results from tension or compression is then involved in the constitutive law and it is modelled using a nonlinear parabolic inclusion. The variational problem is formulated as a coupled system of evolutionary equations for which we state the existence of a unique solution. Then, we introduce a fully discrete scheme using the finite element method to approximate the spatial variable and the Euler scheme to discretize the time derivatives. Error estimates are derived and, under suitable regularity hypotheses, the convergence of the numerical scheme obtained. Finally, a numerical algorithm and results are presented for some two-dimensional examples.
Journal: Journal of Computational and Applied Mathematics - Volume 192, Issue 1, 15 July 2006, Pages 30–39