کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4691987 1636767 2014 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Viscoplasticity of polycrystalline olivine experimentally deformed at high pressure and 900 °C
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات فرآیندهای سطح زمین
پیش نمایش صفحه اول مقاله
Viscoplasticity of polycrystalline olivine experimentally deformed at high pressure and 900 °C
چکیده انگلیسی


• Dry olivine aggregates were deformed in tri-axial compression at lithospheric T.
• TEM shows activity of both [100] and [001] dislocation glide at low T.
• Aggregates display strain hardening, consistent with dislocation entanglement.
• Electron tomography (3D TEM) permitted to identify numerous planes of glide.
• Stresses are lower than predicted from high-temperature experiments.

We have performed tri-axial compression experiments on olivine aggregates at 900 °C and at a confining pressure of 300 MPa in a high-resolution gas-medium mechanical testing apparatus. Deformation at two different constant strain rates (1.1 × 10− 5 s− 1 and 3.4 × 10− 4 s− 1) yields continuous hardening, reaching maximal differential stresses of 930 and 1076 MPa, respectively, before sample failure at ca. 10% strain. The deformed samples were characterized by electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). Crystallographic preferred orientations (CPO) are weak but reveal an alignment of the [010] axes around the compression direction and some concentration of [001] and [100] axes normal to it. TEM observations confirm plastic deformation by dislocation glide, with both [001] and [100] Burgers vectors. Electron tomography, performed for the first time on deformed fined-grained olivine, shows that [001] dislocations glide extensively on {110} and {130} planes, in complement to the (010) and (100) glide planes often reported at high temperatures. [100] dislocations glide mostly on (010), but {011} and {041} planes are also activated. The experimental CPO and relative activity of slip systems are well reproduced by viscoplastic self-consistent simulations in which all [100] and [001] slip systems have similar strengths. They are also consistent with olivine CPO from natural samples deformed at low temperature. Comparison of the present mechanical results to those obtained for olivine single-crystals at similar conditions shows that at low temperature (below 1100 °C) and high stress (> 300 MPa) polycrystalline olivine has a more complex mechanical behavior than single crystals. However, both datasets advocate for a much weaker dry mantle lithosphere than previously thought.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Tectonophysics - Volume 623, 2 June 2014, Pages 123–135
نویسندگان
, , , , ,