کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4697163 1351864 2015 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Determination of germanium isotopic compositions of sulfides by hydride generation MC-ICP-MS and its application to the Pb–Zn deposits in SW China
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات زمین شناسی اقتصادی
پیش نمایش صفحه اول مقاله
Determination of germanium isotopic compositions of sulfides by hydride generation MC-ICP-MS and its application to the Pb–Zn deposits in SW China
چکیده انگلیسی

Determining Ge isotopic compositions of sulfides is important to understand the ore-forming processes. Single step anion-exchange chromatography was previously used to recover Ge from silicates and lignites. We apply this procedure to recover Ge from sulfides before determining Ge isotopic compositions by hydride generation (HG)-MC-ICP-MS. Germanium is quantitatively recovered by the proposed sample preparation method. There are no obvious isotope biases for Ge-bearing solutions containing significant amounts of Cu, Sn, and W. However, δ74Ge values show obvious shifts if the solutions contain high Zn, Pb, and Sb, which is possibly attributed to suppression of germane formation that fractionates Ge isotopes. The long-term reproducibility for Ge standard solution is about ± 0.18‰ for δ74Ge. Spex and Merck standard solutions yield mean δ74Ge values of − 0.70 ± 0.19‰ and − 0.36 ± 0.08‰, respectively. The calculated δ74Ge value (− 5.13‰) of sphalerite standard based on doping experiments is indistinguishable from those of sphalerite without doping (− 5.05‰ and − 5.01‰). Sulfides from the Jinding, Shanshulin, and Tianqiao Pb–Zn deposits in SW China have δ74Ge values of − 4.94‰ to + 2.07‰. The paragenetic sequence of sulfides from the Shanshulin and Tianqiao Pb–Zn deposits is pyrite, sphalerite and galena from early to late. Sulfides from the same ore show a trend of δ74Gepyrite < δ74Gesphalerite < δ74Gegalena, which may be controlled by the kinetic or Rayleigh fractionation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Ore Geology Reviews - Volume 65, Part 4, March 2015, Pages 1095–1109
نویسندگان
, , ,