کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4700703 1637736 2008 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
REE systematics of fluorides, calcite and siderite in peralkaline plutonic rocks from the Gardar Province, South Greenland
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات ژئوشیمی و پترولوژی
پیش نمایش صفحه اول مقاله
REE systematics of fluorides, calcite and siderite in peralkaline plutonic rocks from the Gardar Province, South Greenland
چکیده انگلیسی

The Gardar failed-rift Province is world-famous for its (per-)alkaline plutonic rocks. Elevated contents of F in the mantle source and F-enrichment in the parental melts have been suggested to account for the peculiarities of the Gardar rocks (e.g. their rare mineralogy, extreme enrichment of HFSE elements, Be or REE in the Ilímaussaq agpaites, and the formation of the unique Ivigtut cryolite deposit). To constrain the formation and chemical evolution of F-bearing melts and fluids, fluorides (fluorite, cryolite, villiaumite, cryolithionite), calcite and siderite from the Ilímaussaq, Motzfeldt and Ivigtut complexes were analysed for their trace element content focusing on the rare earth elements and yttrium (REE).The various generations of fluorite occurring in the granitic Ivigtut, agpaitic Ilímaussaq and miaskitic to agpaitic Motzfeldt intrusions all share a negative Eu anomaly which is attributed to (earlier) feldspar fractionation in the parental alkali basaltic melts. This interpretation is supported by the abundance of anorthositic xenoliths in many Gardar plutonic rocks.The primary magmatic fluorites from Ilímaussaq and Motzfeldt display very similar REE patterns suggesting a formation from closely related parental melts under similar conditions. Hydrothermal fluorites from these intrusions were used to constrain the multiple effects responsible for the incorporation of trace elements into fluorides: temperature dependence, fluid migration/interaction and complexation resulting in REE fractionation. Generally, the REE patterns of Gardar fluorides reflect the evolution and migration of a F/CO2-rich fluid leading to the formation of fluorite and fluorite/calcite veins. In certain units, this fluid inherited the REE patterns of altered host rocks. In addition, there is evidence of an even younger fluid of high REE abundance which resulted in highly variable REE concentrations (up to three orders of magnitude) within one sample of hydrothermal fluorite.The REE patterns of the granitic Ivigtut intrusion show flat to slightly heavy-REE-enriched patterns characterised by a strong tetrad effect. This effect is interpreted to record extensive fluid–rock interaction in highly fractionated, Si-rich systems.Interestingly, the fluorides appear to record different source REE patterns, as the spatially close Motzfeldt and Ilímaussaq intrusions show strong similarities and contrast with the Ivigtut intrusion located 100 km NE. These variations may be attributed to differences in the tectonic position of the intrusions or mantle heterogeneities.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chemical Geology - Volume 247, Issues 1–2, 15 January 2008, Pages 16–35
نویسندگان
, , ,