کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4712577 | 1638374 | 2012 | 10 صفحه PDF | دانلود رایگان |

In the last 30 years, numerous eruptions and associated deformation episodes have occurred at Mt. Etna volcano. Datasets recorded by continuous monitoring of these episodes provide a unique opportunity to study the relationships between volcanism, flank instability and faulting activity. We have investigated the stress triggering mechanism between magmatic reservoir inflation, intrusive episodes and flank dynamics. Using three-dimensional numerical Boundary Elements Models we simulated volcano-tectonic events and calculated Coulomb stress changes. Using this modeling approach, we analyzed four realistic scenarios that are representative of recent kinematics occurring at Mt. Etna. The main results obtained highlight how (1) the inflation of a deep spherical magma source transfers elastic stress to a sliding plane and faults, (2) the opening of the NE Rift and S Rift (to a less efficient extent) favors movements of the instable sector and may encourage seismicity on the eastern flank faults, and (3) flank instability may trigger the uprising of magma. Defining the effects of the elastic stress transfer and relationships among the main forces acting on volcano, may help to forecast possible eruption scenarios during future episodes of unrest at Mount Etna and provide an important tool for decision makers during volcanic emergencies involving the highly populated areas of the volcano.
► We model static stress variation at Mt. Etna by means of a numerical method.
► We hypothesized realistic scenarios on the basis of recent eruptive episodes.
► The inflating of a magma source transfers stress to a sliding plane and faults.
► Opening of the NE Rift and S Rift favors movements of the instable sector.
► Flank instability may trigger the uprising of magma.
Journal: Journal of Volcanology and Geothermal Research - Volumes 245–246, 1 November 2012, Pages 149–158