کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4715170 1638421 2010 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Quantitative assessment of volcanic ash hazards for health and infrastructure at Mt. Etna (Italy) by numerical simulation
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات ژئوشیمی و پترولوژی
پیش نمایش صفحه اول مقاله
Quantitative assessment of volcanic ash hazards for health and infrastructure at Mt. Etna (Italy) by numerical simulation
چکیده انگلیسی

We performed a quantitative hazard assessment to determine the potential impacts of volcanic tephra fall on human health and infrastructure in the vicinity of Mt. Etna (Italy). Using the numerical model VOL-CALPUFF, we explored the dynamics of long-lasting weak plume eruptions and their effects on the surrounding region. Input data are based on credible estimates of the main parameters characterising the expected events as derived from the historically observed and reconstructed explosive record of Mt. Etna. Monte Carlo techniques are used to capture the effects on estimates of finer ash concentration and total ground deposition due to volcanological uncertainties and meteorological variability. Numerical simulations compute the likelihoods of experiencing critical 10-μm volcanic particle (VP10) concentrations in ambient air and tephra ground deposition at various populated locations around the volcano, including the city of Catania, and at key infrastructure, such as airports and main roads. Results show how the towns and infrastructure on the east side of the volcano are significantly more exposed to ash-related hazards than those on the west side, in accordance with wind statistics. Simulation outcomes also illustrate how, at the sites analysed, the amount of deposited particulate matter is proportional to the intensity (i.e. mass flow rate) of the event whereas predicted values of VP10 concentrations are significantly larger for smaller events due to the reduced dispersal of low altitude plumes. The use of a simple re-mobilization model highlights the fact that particle re-suspension needs to be considered in the estimation of VP10 values. Our findings can be used to inform civil protection agencies responsible for mitigating tephra fall impacts to human health, road transport and aviation safety.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Volcanology and Geothermal Research - Volume 192, Issues 1–2, 20 April 2010, Pages 85–96
نویسندگان
, , , , , , ,