کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4715610 1638656 2015 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
New parametric implementation of metamorphic reactions limited by water content, impact on exhumation along detachment faults
ترجمه فارسی عنوان
اجرای پارامترهای جدید از واکنش های متاموریک محدود شده توسط محتوای آب، تاثیر بر خروج از طریق گسل های جداشدگی
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات ژئوشیمی و پترولوژی
چکیده انگلیسی


• Numerical modeling study of hydro-mechanical interactions during continental extension
• Experiments show strong influence of fluid content on the mechanisms of metamorphic core complex formation.
• Extensional domes are exhumed along asymmetric detachment faults.

Metamorphic phase changes have a strong impact on the physical and mechanical properties of rocks including buoyancy (body forces) and rheology (interface forces). As such, they exert important dynamic control on tectonic processes. It is generally assumed that phase changes are mainly controlled by pressure (P) and temperature (T) conditions. Yet, in reality, whatever the PT conditions are, phase changes cannot take place without an adequate amount of the main reactant — water. In present day geodynamic models, the influence of water content is neglected. It is generally assumed that water is always available in quantities sufficient for thermodynamic reactions to take place at minimal Gibbs energy for given P and T conditions and a constant chemical composition. If this assumption was correct, no high-grade metamorphic rocks could to be found on the Earth's surface, since they would be retro-morphed to low-grade state during their exhumation. Indeed, petrologic studies point out that water, as a limiting reactant, is responsible for the lack of retrograde metamorphic reactions observed in the rocks exhumed in typical MCC contexts. In order to study the impact of fluid content on the structure of metamorphic core complexes, we have coupled a geodynamic thermo-mechanical code Flamar with a fluid-transport and water-limited thermodynamic phase transition algorithm. We have introduced a new parameterization of Darcy flow that is able to capture source/sink and transport aspects of fluid transport at the scale of the whole crust with a minimum of complexity. Within this model, phase transitions are controlled by pressure temperature and the local amount of free fluid that comes from both external (meteoric) and local (dehydration) sources. The numerical experiments suggest a strong positive feedback between the asymmetry of the tectonic structures and the depth of penetration of meteoric fluids. In particular, bending-stress distribution in asymmetric detachment zones drives the penetration of meteoric fluids to greater depths. However, thermal weakening and/or slow re-equilibration of the protolith rocks at depth tend to decrease the asymmetry of structure, changing the orientation of the bending stresses and reduce the activity of asymmetric detachments in favor of spreading structures, which results in the formation of double-domes.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Lithos - Volumes 236–237, November 2015, Pages 287–298
نویسندگان
, , , ,