کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4715827 1638673 2014 24 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Repeated magmatism at 34 Ma and 23-20 Ma producing high magnesian adakitic andesites and transitional basalts on southern Okushiri Island, NE Japan arc
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات ژئوشیمی و پترولوژی
پیش نمایش صفحه اول مقاله
Repeated magmatism at 34 Ma and 23-20 Ma producing high magnesian adakitic andesites and transitional basalts on southern Okushiri Island, NE Japan arc
چکیده انگلیسی


• We show comagmatism of high-Mg adakitic andesite and high-TiO2 basalt.
• HMAA resulted from the interaction of slab-derived melts with mantle peridotite.
• High-TiO2 basalt magma segregated from mantle peridotite at 60 km depth.
• HMAA and high-TiO2 basalt magmas were generated independently.

The southern part of Okushiri Island in the present-day back-arc margin of the NE Japan arc is one of the rare convergent plate boundaries where similar magma types (high-magnesian adakitic andesite (HMAA) and high-TiO2 basalt (HTB)) have been erupted concurrently at more than one time. Oligocene HMAA can be divided into two types: HMAA-I is characterized by high Sr/Y and low Y, and HMAA-II by relatively low Sr/Y and high Y. HMAA-I is primitive in terms of MgO (8.5 wt.%), Mg# (67), Ni (232 ppm) and Cr (613 ppm) contents, and the most Mg-rich olivine phenocrysts plot within the mantle olivine array in terms of Fo and NiO. The similar Cr versus Ni relations of types I and II HMAA indicate some interaction of slab-derived adakitic melts with mantle peridotite, whereas Ni contents are higher than those of most boninites derived by partial melting of mantle peridotite at a given Cr content. Types I and II HMAA have more enriched Sr and Nd isotopic compositions than N-MORB. The petrography and geochemistry of these rocks, combined with published results on the genesis of high-magnesian andesite (HMA) indicate that types I and II HMAA could be produced by interaction of slab (N-MORB and sediment)-derived adakitic melts with mantle peridotite. The comagmatism of HMAA and HTB is ascribed to the following model. A cool, less hydrous, adakite magma (spherical diapir) would rise from the subducting slab (Pacific Plate) and become more hydrous as a result of its interaction with overlying hydrous peridotite. This hydrated adakitic diapir further ascends and is heated on entering the overlying mantle wedge. Subsequently, the temperature and H2O gradients in the ascending adakitic diapir and surrounding mantle peridotite would have been established. The HTB magma segregated from the surrounding mantle peridotite region (high temperature and low H2O content) at a depth of 60 km or more, whereas the adakitic diapir (low temperature and high H2O content) continued to rise, with its chemical composition modified due to interaction with the surrounding mantle peridotite. Type I HMAA then segregated at about 50 km.The most attractive tectono-magmatic model to account for production of adakitic magma at two different periods in the same cool subduction zone region involves upwelling of depleted hot asthenosphere into the subcontinental lithosphere beneath the back-arc margin of the NE Japan arc, coincident with back-arc rifting which took place at the initiation of the Japan Sea opening. The unusually high temperature conditions established in the mantle wedge due to upwelling of depleted hot asthenosphere caused partial melting of a limited part of the cool oceanic crust subducting beneath the NE Japan arc, resulting in the generation of adakitic magma.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Lithos - Volume 205, 15 September 2014, Pages 60–83
نویسندگان
, , , , , ,