کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4722973 1639629 2014 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Detrital zircon geochronology and provenance of the Neoproterozoic Hammamat Group (Igla Basin), Egypt and the Thalbah Group, NW Saudi Arabia: Implications for regional collision tectonics
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات ژئوشیمی و پترولوژی
پیش نمایش صفحه اول مقاله
Detrital zircon geochronology and provenance of the Neoproterozoic Hammamat Group (Igla Basin), Egypt and the Thalbah Group, NW Saudi Arabia: Implications for regional collision tectonics
چکیده انگلیسی


• U–Pb detrital zircon ages from Neoproterozoic sediments of the ANS are presented.
• The Wadi Igla Formation in the Eastern Desert of Egypt was deposited at ≤628 ± 6 Ma.
• The Thalbah Group sediments span a depositional period between ca. 635 and 596 Ma.
• The Thalbah Group has a multi-phase Cryogenian-early Ediacaran tectonic evolution.
• Detrital zircon age distributions may reflect the onset of collision at ca. 596 Ma.

Detrital zircon U–Pb SIMS dating is used to evaluate the provenance of two correlative basins in the Arabian-Nubian Shield (ANS). The Wadi Igla Formation in the Central Eastern Desert (CED) of Egypt and the Thalbah Group in the Midyan Terrane (MT) of NW Saudi Arabia are considered to be post-amalgamation terrestrial basins, developed during closure of the Mozambique Ocean and amalgamation of the ANS in Cryogenian-early Ediacaran time. The analytical results indicate that the upper-part of the Wadi Igla Formation has a maximum depositional age of 628 ± 6 Ma, contains 98% Neoproterozoic zircon with ages between 815 and 628 Ma, and has two distinct peaks at 690 Ma and 652 Ma. A rhyolite clast from the upper-part of the Wadi Igla Formation gives a U–Pb age of 700 ± 6 Ma. This age significantly pre-dates Dokhan volcanism, indicating that the dominant rhyolitic clasts within the Wadi Igla Formation are not from the Dokhan Volcanics, as previously believed. Analytical results from the Thalbah Group suggest multiphase basin formation and development. The lower part of the Thalbah Group is intruded by monzogranites of the Liban complex, has a minimum depositional age of 635 ± 5 Ma, resembling that of the Wadi Igla Formation. Its middle part has a maximum age of 612 ± 7 Ma and is comprised of 90% Neoproterozoic zircon with ages ranging from 820 to 612 Ma. The upper part of the Thalbah Group has a maximum age of 596 ± 10 Ma and contains a wider range of Neoproterozoic detritus with ages between 985 and 596 Ma. The basement of the Thalbah Group is represented by metasediments and metavolcanics of the Zaam Group. The sample collected from the uppermost part of the Zaam Group (Um Ashsh Formation) contains zircon of mostly Cryogenian age (ca. 812–697 Ma) and has a maximum age of 700 ± 4 Ma, suggesting that the Zaam Group might be correlative with the subduction-related metavolcanic and metasedimentary rocks that are overlain unconformably by the Wadi Igla Formation in the CED.The Wadi Igla basin and the lower and middle parts of the Thalbah basin have similar provenance, record a Cryogenian-early Ediacaran age, and represent syn-subduction (rather than post-amalgamation) basins. The upper part of the Thalbah Group, in contrast, has a distinct provenance representing an Ediacaran syn-collisional basin. The narrow age range of the Wadi Igla Formation and the lower and middle parts of the Thalbah Group indicates a restricted source from the CED and MT island arc basement, whereas the wide age range for the upper part of the Thalbah Group indicates a contribution from other parts of the ANS. The sediment sources and the age patterns of detrital zircons change abruptly at ca. 596 Ma. This may coincide with the onset of collision of the CED and MT basements with the older Hijaz-Gebeit terrane (850–680 Ma) to the south along the Yanbu-Onib-Sol Hamed-Gerf-Allaqi-Heiani (YOSHGAH) suture in the ANS during the East African Orogeny.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Precambrian Research - Volume 245, May 2014, Pages 225–243
نویسندگان
, , , , , ,