کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4724898 | 1639851 | 2015 | 12 صفحه PDF | دانلود رایگان |

• We reinforce three quality control criteria for quartz OSL signals used in dating.
• Bedrock quartz from low-grade metapelites often meets the proposed criteria.
• Bedrock quartz from high-grade metamorphic and magmatic rocks generally does not.
• Saturation of quartz OSL further narrows its thermochronological application.
Optically stimulated luminescence (OSL) thermochronometry is an emerging application, whose capability to record sub-Million-year thermal histories is of increasing interest to a growing number of subdisciplines of Quaternary research. However, several recent studies have encountered difficulties both in extraction of OSL signals from bedrock quartz, and in their thermochronometric interpretation, thus highlighting the need for a methodological benchmark. Here, we investigate the characteristic OSL signals from quartz samples across all major types of bedrock and covering a wide range of chemical purities. High ratios of infrared to blue stimulated luminescence (IRSL/BLSL), an insensitive ‘fast’ OSL component, and anomalously short recombination lifetimes seen in time-resolved luminescence (TR-OSL), are often encountered in quartz from crystalline (magmatic and metamorphic) bedrock, and may hamper successful OSL dating. Furthermore, even when the desirable signal is present, its concentration might be indistinguishable from its environmental steady-state prediction, thus preventing its conversion to a cooling or heating history. We explore the saturation properties and the thermal activation parameters of various OSL signals in quartz to outline the capabilities and limitations for their use in low-temperature thermochronometry.
Journal: Quaternary Geochronology - Volume 25, February 2015, Pages 37–48