کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4730438 | 1356758 | 2015 | 15 صفحه PDF | دانلود رایگان |

• We report the zircon ages and geochemical features of Erenhot ophiolitic complex.
• It is the western continuation of Hegenshan ophiolite.
• An incipient ocean basin probably had already developed during early Carboniferous.
• It is related to lithospheric extension after subduction-slab breakoff.
The Eastern Erenhot ophiolitic complex (EOC) is one of the numerous fragments of oceanic lithosphere in southeastern Central Asian Orogenic Belt. It is composed dominantly of serpentinized ultramafic rocks with subordinate gabbros, mafic lavas and minor plagiogranite dikes. Zircons from two gabbros and one plagiogranite yielded weighted mean 206Pb/238U ages of 354.2 ± 4.5 Ma, 353.3 ± 3.7 Ma and 344.8 ± 5.5 Ma. These ages suggest that the oceanic crust of the EOC formed in a maximum time period of 10 Ma, and that the plagiogranite may have formed later than the gabbroic section. An undeformed and unmetamorphosed dioritic porphyry dike intruded in the Carboniferous strata near the EOC has an intrusive age of 313.6 ± 2.9 Ma and provides a possible younger minimum time limit for the formation of the early Carboniferous ophiolitic complex. All the mafic rocks have similar chondrite normalized REE patterns characterized by moderate depletion in LREE with (La/Yb)N (0.20–0.75) similar to normal middle oceanic ridge basalt (N-MORB). The PM-normalized trace element patterns of the gabbros and massive basalts are also reasonably consistent, essentially similar to those of N-MORB except for some enrichment in LILE (e.g. Rb, Ba) and slightly negative Ti anomalies. The plagiogranite samples are characterized by lower K2O (0.45–0.73 wt%) comparable with oceanic plagiogranite. They have LREE-enriched, chondrite-normalized REE patterns with varying Eu anomalies and the trace elements (e.g. Rb, Y, Nb) show similarity to volcanic arc granite. These geochemical features of the EOC show a similar volcanic arc affinity, suggesting that they form in a back-arc-type environment. Their origin is attributed to asthenospheric upwelling and further lithospheric extension during early Carboniferous, formed as a consequence of slab breakoff on collision of the northern early to mid-Paleozoic orogenic terrane and the Hunshandake Block.
Journal: Journal of Asian Earth Sciences - Volume 97, Part B, 1 January 2015, Pages 279–293