کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4743192 1641785 2016 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Ultrasonic and X-ray computed tomography characterization of progressive fracture damage in low-porous carbonate rocks
ترجمه فارسی عنوان
مشخصات توموگرافی کامپوزیتی سونوگرافی و اشعه ایکس از آسیب شکستگی پیشرونده در سنگ های کربنات پایین متخلخل است
کلمات کلیدی
تکامل آسیب، استرس شروع خستگی، انتشار کراک، تست فشرده سازی یکسانی سنگ آهک، سنگ مرمر
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات مهندسی ژئوتکنیک و زمین شناسی مهندسی
چکیده انگلیسی


• A new methodology is tested for studying the failure process of low porous rocks.
• σci varies between 0.25 σp–0.85 σp, being higher in limestones than in marbles.
• Intercrystalline porosity disappears rapidly at the first loading steps.
• Evidences of stylolites acting as crack nucleators are observed in 3D reconstructions.
• The ultrasonic frequency spectrum is very sensitive to fabric changes during compression.

This paper studies the fracturing process in low-porous rocks during uniaxial compressive tests considering the original defects and the new mechanical cracks in the material. For this purpose, five different kinds of rocks have been chosen with carbonate mineralogy and low porosity (lower than 2%). The characterization of the fracture damage is carried out using three different techniques: ultrasounds, mercury porosimetry and X-ray computed tomography. The proposed methodology allows quantifying the evolution of the porous system as well as studying the location of new cracks in the rock samples.Intercrystalline porosity (the smallest pores with pore radius < 1 μm) shows a limited development during loading, disappearing rapidly from the porosimetry curves and it is directly related to the initial plastic behaviour in the stress–strain patterns. However, the biggest pores (corresponding to the cracks) suffer a continuous enlargement until the unstable propagation of fractures. The measured crack initiation stress varies between 0.25 σp and 0.50 σp for marbles and between 0.50 σp and 0.85 σp for micrite limestone. The unstable propagation of cracks is assumed to occur very close to the peak strength. Crack propagation through the sample is completely independent of pre-existing defects (porous bands, stylolites, fractures and veins). The ultrasonic response in the time-domain is less sensitive to the fracture damage than the frequency-domain. P-wave velocity increases during loading test until the beginning of the unstable crack propagation. This increase is higher for marbles (between 15% and 30% from initial vp values) and lower for micrite limestones (between 5% and 10%). When the mechanical cracks propagate unstably, the velocity stops to increase and decreases only when rock damage is very high. Frequency analysis of the ultrasonic signals shows clear changes during the loading process. The spectrum of treated waveforms shows two main frequency peaks centred at low (~ 20 kHz) and high (~ 35 kHz) values. When new fractures appear and grow the amplitude of the high-frequency peak decreases, while that of the low-frequency peak increases. Besides, a slight frequency shift is observed towards higher frequencies.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Engineering Geology - Volume 200, 18 January 2016, Pages 47–57
نویسندگان
, , , , ,