کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5432926 | 1398047 | 2017 | 9 صفحه PDF | دانلود رایگان |
- A role for dentinal fluid proteins in monomer diffusion through dentin is proposed.
- Albumin is used a model for its ligand binding ability.
- Passive transport by protein could help hydrophobic monomer diffuse to pulp.
ObjectivesAssessing the role of dentinal fluid proteins in trans-dentinal diffusion of free monomers in vitro.MethodsAn artificial pulp chamber (APC) topped human dentin disks was used. A simplified two-step etch-and-rinse adhesive was formulated with 2-hydroethyl-methacrylate (HEMA), Bisphenol-A-diglycidyl-methacrylate (BisGMA), using Camphorquinone/tertiary amine as initiators. Two extraction media were used: buffered saline (Control), buffered saline with 1% bovine serum albumin (BSA). Samples were acid-etched, rinsed, air dried. Simplified primer was used, adhesive applied then light cured with a LED curing. Monomer diffusion was assessed by reverse phase HPLC.ResultsQuantifiable amounts of HEMA were detected in both extraction media while BisGMA was present in quantifiable amounts in BSA medium only. Diffused monomers concentrations were significantly higher for both monomers in BSA extraction medium.SignificanceAlbumin is sometimes referred to as taxi protein for its ability to bind and transport hydrophobic ligands. From our results, we hypothesized that albumin can also transport unbound monomers released from dental adhesive through the dentin barrier. However, dentinal fluid proteins like albumin could have significant effect on monomer diffusion through dentin to the dental pulp transporting highly hydrophobic molecules like BisGMA and enhancing diffusion of more hydrophilic ones like HEMA. These results demonstrate a new possible mechanism for cytotoxicity of resin monomers.
Journal: Dental Materials - Volume 33, Issue 6, June 2017, Pages 743-751