کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5466064 1517976 2017 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The mechanism of an increase in electrical resistance in Al thin film induced by current stressing
ترجمه فارسی عنوان
مکانیسم افزایش مقاومت الکتریکی در الگوی نازک القا شده توسط استرس فعلی
کلمات کلیدی
آلومینیوم، فیلم های نازک جریان برق تحت فشار، مقاومت الکتریکی، تراکم جابجایی، کشش مشبک،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد فناوری نانو (نانو تکنولوژی)
چکیده انگلیسی
A 10 mm × 2 mm × 500 nm Al thin film was stressed with electric current at 1.5-3.0 × 105 A cm− 2 for 1 h under an ambient atmosphere. Ex situ variations in the sheet resistance induced by current stressing were measured with a four-point probe. The critical current density for the resistance change was observed between 1.5 × 105 and 2.0 × 105 A cm− 2. The electrical resistance reached a maximum increment of 5.47% at 2.5 × 105 A cm− 2. The lattice structure of the Al thin film was investigated with a high resolution transmission electron microscope to determine the fundamental effects of electric current stressing on the electrical property of the metal film. The high resolution lattice images incorporating a selected area fast Fourier transform indicated a large degree of lattice distortion and high dislocation density, up to 8.60 × 1016 m− 2, in the metal film after current stressing at 3.0 × 105 A cm− 2. The dislocations are believed to have been generated by the impingement of electron wind. In situ synchrotron X-ray diffraction further evidenced a high degree of lattice strain, as great as 1.1% at 3.0 × 105 A cm− 2, as estimated from the low angle shifts in the diffraction peaks. The generation of dislocations and the lattice strain induced by current stressing were orientation-dependent, as determined by the d-spacing of the lattice orientation. The formation of a high dislocation density and the subsequent buildup of lattice strain caused to an increase in electrical resistance of the Al thin film.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Thin Solid Films - Volume 636, 31 August 2017, Pages 164-170
نویسندگان
, , ,