| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
|---|---|---|---|---|
| 5472439 | 1519917 | 2017 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Swarm satellite mission scheduling & planning using Hybrid Dynamic Mutation Genetic Algorithm
ترجمه فارسی عنوان
برنامه ریزی ماموریت ماهواره و برنامه ریزی با استفاده از الگوریتم ژنتیک جهش پویا ترکیبی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
استقلال کشتی، برنامه ریزی ماموریت، الگوریتم ژنتیک، جهش پویا ترکیبی،
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی هوافضا
چکیده انگلیسی
Space missions have traditionally been controlled by operators from a mission control center. Given the increasing number of satellites for some space missions, generating a command list for multiple satellites can be time-consuming and inefficient. Developing multi-satellite, onboard mission scheduling & planning techniques is, therefore, a key research field for future space mission operations. In this paper, an improved Genetic Algorithm (GA) using a new mutation strategy is proposed as a mission scheduling algorithm. This new mutation strategy, called Hybrid Dynamic Mutation (HDM), combines the advantages of both dynamic mutation strategy and adaptive mutation strategy, overcoming weaknesses such as early convergence and long computing time, which helps standard GA to be more efficient and accurate in dealing with complex missions. HDM-GA shows excellent performance in solving both unconstrained and constrained test functions. The experiments of using HDM-GA to simulate a multi-satellite, mission scheduling problem demonstrates that both the computation time and success rate mission requirements can be met. The results of a comparative test between HDM-GA and three other mutation strategies also show that HDM has outstanding performance in terms of speed and reliability.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Acta Astronautica - Volume 137, August 2017, Pages 243-253
Journal: Acta Astronautica - Volume 137, August 2017, Pages 243-253
نویسندگان
Zixuan Zheng, Jian Guo, Eberhard Gill,
