کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5504456 1536289 2017 39 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Reduction of quinones and nitroaromatic compounds by Escherichia coli nitroreductase A (NfsA): Characterization of kinetics and substrate specificity
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی زیست شیمی
پیش نمایش صفحه اول مقاله
Reduction of quinones and nitroaromatic compounds by Escherichia coli nitroreductase A (NfsA): Characterization of kinetics and substrate specificity
چکیده انگلیسی
NfsA, a major FMN-associated nitroreductase of E. coli, reduces nitroaromatic compounds via consecutive two-electron transfers. NfsA has potential applications in the biodegradation of nitroaromatic environment pollutants, e.g. explosives, and is also of interest for the anticancer strategy gene-directed enzyme prodrug therapy. However, the catalytic mechanism of NfsA is poorly characterized. Here we examined the NADPH-dependent reduction of quinones (n = 16) and nitroaromatic compounds (n = 12) by NfsA. We confirmed a general “ping-pong” reaction scheme, and preliminary rapid reaction studies of the enzyme reduction by NADPH showed that this step is much faster than the steady-state turnover number, i.e., the enzyme turnover is limited by the oxidative half-reaction. The reactivity of nitroaromatic compounds (log kcat/Km) followed a linear dependence on their single-electron reduction potential (E17), indicating a limited role for compound structure or active site flexibility in their reactivity. The reactivity of quinones was lower than that of nitroaromatics having similar E17 values, except for the significantly enhanced reactivity of 2-OH-1,4-naphthoquinones, consistent with observations previously made for the group B nitroreductase of Enterobacter cloacae. We present evidence that the reduction of quinones by NfsA is most consistent with a single-step (H−) hydride transfer mechanism.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Archives of Biochemistry and Biophysics - Volume 614, 15 January 2017, Pages 14-22
نویسندگان
, , , ,