کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5771244 1629906 2017 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Towards robust quantification and reduction of uncertainty in hydrologic predictions: Integration of particle Markov chain Monte Carlo and factorial polynomial chaos expansion
ترجمه فارسی عنوان
به سوی تعیین مقدار کافی و کاهش عدم اطمینان در پیش بینی های هیدرولوژیکی: ادغام ذرات ذرات مارکوف مونت کارلو و گسترش هرج و مرج فاکتوریل چندجملهای
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات فرآیندهای سطح زمین
چکیده انگلیسی


- Model parameters and states were estimated using particle Markov chain Monte Carlo.
- Parameter identifiability was determined through streamflow assimilation.
- Uncertainty propagation was characterized by factorial polynomial chaos expansion.
- Posterior parameter distributions were transformed using Gaussian anamorphosis.
- Dynamics of parameter sensitivities and interactions were revealed explicitly.

The particle filtering techniques have been receiving increasing attention from the hydrologic community due to its ability to properly estimate model parameters and states of nonlinear and non-Gaussian systems. To facilitate a robust quantification of uncertainty in hydrologic predictions, it is necessary to explicitly examine the forward propagation and evolution of parameter uncertainties and their interactions that affect the predictive performance. This paper presents a unified probabilistic framework that merges the strengths of particle Markov chain Monte Carlo (PMCMC) and factorial polynomial chaos expansion (FPCE) algorithms to robustly quantify and reduce uncertainties in hydrologic predictions. A Gaussian anamorphosis technique is used to establish a seamless bridge between the data assimilation using the PMCMC and the uncertainty propagation using the FPCE through a straightforward transformation of posterior distributions of model parameters. The unified probabilistic framework is applied to the Xiangxi River watershed of the Three Gorges Reservoir (TGR) region in China to demonstrate its validity and applicability. Results reveal that the degree of spatial variability of soil moisture capacity is the most identifiable model parameter with the fastest convergence through the streamflow assimilation process. The potential interaction between the spatial variability in soil moisture conditions and the maximum soil moisture capacity has the most significant effect on the performance of streamflow predictions. In addition, parameter sensitivities and interactions vary in magnitude and direction over time due to temporal and spatial dynamics of hydrologic processes.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Hydrology - Volume 548, May 2017, Pages 484-497
نویسندگان
, , , ,