کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5776160 1631964 2018 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Uniform approximation to Cauchy principal value integrals with logarithmic singularity
ترجمه فارسی عنوان
تقریب یکنواخت به انتگرال ارزش اصلی کوشی با تکینگی لگاریتمی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
چکیده انگلیسی
An approximation of Clenshaw-Curtis type is given for Cauchy principal value integrals of logarithmically singular functions I(f;c)=−∫−11f(x)(log|x−c|)∕(x−c)dx (c∈(−1,1)) with a given function f. Using a polynomial pN of degree N interpolating f at the Chebyshev nodes we obtain an approximation I(pN;c)≅I(f;c). We expand pN in terms of Chebyshev polynomials with O(NlogN) computations by using the fast Fourier transform. Our method is efficient for smooth functions f, for which pN converges to f fast as N grows, and so simple to implement. This is achieved by exploiting three-term inhomogeneous recurrence relations in three stages to evaluate I(pN;c). For f(z) analytic on the interval [−1,1] in the complex plane z, the error of the approximation I(pN;c) is shown to be bounded uniformly. Using numerical examples we demonstrate the performance of the present method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 327, 1 January 2018, Pages 1-11
نویسندگان
, ,