کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5776305 1631968 2017 36 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Analysis of a conforming finite element method for the Boussinesq problem with temperature-dependent parameters
ترجمه فارسی عنوان
تجزیه و تحلیل یک روش عنصر محدود برای مصارف بوسیستیک با پارامترهای وابسته به دما
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
چکیده انگلیسی
In this paper we analyze a conforming finite element method for the numerical simulation of non-isothermal incompressible fluid flows subject to a heat source modeled by a generalized Boussinesq problem with temperature-dependent parameters. We consider the standard velocity-pressure formulation for the fluid flow equations which is coupled with a primal-mixed scheme for the convection-diffusion equation modeling the temperature. In this way, the unknowns of the resulting formulation are given by the velocity, the pressure, the temperature, and the normal derivative of the latter on the boundary. Hence, assuming standard hypotheses on the discrete spaces, we prove existence and stability of solutions of the associated Galerkin scheme, and derive the corresponding Cea's estimate for small and smooth solutions. In particular, any pair of stable Stokes elements, such as Hood-Taylor elements, for the fluid flow variables, continuous piecewise polynomials of degree ≤k+1 for the temperature, and piecewise polynomials of degree ≤k for the boundary unknown becomes feasible choices of finite element subspaces. Finally, we derive optimal a priori error estimates, and provide several numerical results illustrating the performance of the conforming method and confirming the theoretical rates of convergence.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 323, 15 October 2017, Pages 71-94
نویسندگان
, ,