کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6017475 1580168 2015 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Regular ArticleFullerenols and glucosamine fullerenes reduce infarct volume and cerebral inflammation after ischemic stroke in normotensive and hypertensive rats
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی عصب شناسی
پیش نمایش صفحه اول مقاله
Regular ArticleFullerenols and glucosamine fullerenes reduce infarct volume and cerebral inflammation after ischemic stroke in normotensive and hypertensive rats
چکیده انگلیسی


- Fullerene derivatives are detectable in the infarcted area 2 h after induction of tMCAO.
- Fullerene derivatives reduce infarct volume after stroke.
- Fullerene derivatives reduce cerebral inflammation after stroke.
- The effect of fullerene derivatives is different in normo- and hypertensive rats.

Cerebral inflammation plays a crucial role in the pathophysiology of ischemic stroke and is involved in all stages of the ischemic cascade. Fullerene derivatives, such as fullerenol (OH-F) are radical scavengers acting as neuroprotective agents while glucosamine (GlcN) attenuates cerebral inflammation after stroke. We created novel glucosamine-fullerene conjugates (GlcN-F) to combine their protective effects and compared them to OH-F regarding stroke-induced cerebral inflammation and cellular damage. Fullerene derivatives or vehicle was administered intravenously in normotensive Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHR) immediately after transient middle cerebral artery occlusion (tMCAO). Infarct size was determined at day 5 and neurological outcome at days 1 and 5 after tMCAO. CD68- and NeuN-staining were performed to determine immunoreactivity and neuronal survival respectively. Cytokine and toll like receptor 4 (TLR-4) expression was assessed using quantitative real-time PCR. Magnetic resonance imaging revealed a significant reduction of infarct volume in both, WKY and SHR that were treated with fullerene derivatives. Treated rats showed an amelioration of neurological symptoms as both OH-F and GlcN-F prevented neuronal loss in the perilesional area. Cerebral immunoreactivity was reduced in treated WKY and SHR. Expression of IL-1β and TLR-4 was attenuated in OH-F-treated WKY rats. In conclusion, OH-F and GlcN-F lead to a reduction of cellular damage and inflammation after stroke, rendering these compounds attractive therapeutics for stroke.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Experimental Neurology - Volume 265, March 2015, Pages 142-151
نویسندگان
, , , , , , , , , , , , , ,