کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6077153 | 1203527 | 2014 | 9 صفحه PDF | دانلود رایگان |

Murine epidermal γδ T cells, known as dendritic epidermal T cells (DETCs), survey tissue stress through the invariant T-cell receptor (TCR) and non-clonotypic receptors such as NKG2D. NKG2D signaling via the DAP10-phosphatidylinositol 3-kinase (PI3K) pathway directly stimulates cytotoxicity in natural killer (NK) cells and costimulates CD8+ T cells to augment TCR signals. In activated murine NK cells, NKG2D signals also via the DAP12-Syk/ZAP70 pathway that triggers both cytotoxicity and cytokine production. It remains controversial whether NKG2D on DETCs is a primary activating receptor or functions only as a costimulatory receptor, and signaling pathways initiated by NKG2D ligation in DETCs have not been analyzed. We show that stimulation of short-term DETC lines with recombinant NKG2D ligands triggers degranulation (exocytosis of cytotoxic granules) via the PI3K-dependent signaling pathway, but does not induce cytokine production or Syk/ZAP70 activation. Coengagement of TCR or Syk/ZAP70 signaling was not crucial for DETC-mediated killing of NKG2D ligand-expressing target cells. Thus, NKG2D can function as a coactivating stress receptor that directly triggers cytotoxicity in DETCs, at least after priming, via the PI3K-dependent, Syk/ZAP70-independent signaling pathway.
Journal: Journal of Investigative Dermatology - Volume 134, Issue 2, February 2014, Pages 396-404