کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6227028 | 1276427 | 2015 | 11 صفحه PDF | دانلود رایگان |

BackgroundPrevious studies have implicated the cyclic adenosine monophosphate/protein kinase A pathway as well as FosB and dynorphin-B expression mediated by dopamine D1 receptor stimulation in the development of 3,4-dihydroxyphenyl-L-alanine (L-DOPA)-induced dyskinesia. The magnitude of these molecular changes correlates with the intensity of dyskinesias. The calcium-binding protein downstream regulatory element antagonistic modulator (DREAM) binds to regulatory element sites called DRE in the DNA and represses transcription of target genes such as c-fos, fos-related antigen-2 (fra-2), and prodynorphin. This repression is released by calcium and protein kinase A activation. Dominant-active DREAM transgenic mice (daDREAM) and DREAM knockout mice (DREAMâ/â) were used to define the involvement of DREAM in dyskinesias.MethodsDyskinesias were evaluated twice a week in mice with 6-hydroxydopamine lesions during long-term L-DOPA (25 mg/kg) treatment. The impact of DREAM on L-DOPA efficacy was evaluated using the rotarod and the cylinder test after the establishment of dyskinesia and the molecular changes by immunohistochemistry and Western blot.ResultsIn daDREAM mice, L-DOPA-induced dyskinesia was decreased throughout the entire treatment. In correlation with these behavioral results, daDREAM mice showed a decrease in FosB, phosphoacetylated histone H3, dynorphin-B, and phosphorylated glutamate receptor subunit, type 1 expression. Conversely, genetic inactivation of DREAM potentiated the intensity of dyskinesia, and DREAMâ/â mice exhibited an increase in expression of molecular markers associated with dyskinesias. The DREAM modifications did not affect the kinetic profile or antiparkinsonian efficacy of L-DOPA therapy.ConclusionsThe protein DREAM decreases development of L-DOPA-induced dyskinesia in mice and reduces L-DOPA-induced expression of FosB, phosphoacetylated histone H3, and dynorphin-B in the striatum. These data suggest that therapeutic approaches that activate DREAM may be useful to alleviate L-DOPA-induced dyskinesia without interfering with the therapeutic motor effects of L-DOPA.
Journal: Biological Psychiatry - Volume 77, Issue 2, 15 January 2015, Pages 95-105