کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6330892 1619786 2014 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Trace element concentrations in leachates and mustard plant tissue (Sinapis alba L.) after biochar application to temperate soils
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم محیط زیست شیمی زیست محیطی
پیش نمایش صفحه اول مقاله
Trace element concentrations in leachates and mustard plant tissue (Sinapis alba L.) after biochar application to temperate soils
چکیده انگلیسی
Biochar application to agricultural soils has been increasingly promoted worldwide. However, this may be accompanied by unexpected side effects in terms of trace element (TE) behavior. We used a greenhouse pot experiment to study the influence of woodchip-derived biochar (wcBC) on leaching and plant concentration of various TEs (Al, Cd, Cu, Pb, Mn, As, B, Mo, Se). Three different agricultural soils from Austria (Planosol, Cambisol, Chernozem) were treated with wcBC at application rates of 1 and 3% (w/w) and subsequently planted with mustard (Sinapis alba L.). Soil samples were taken 0 and 7 months after the start of the pot experiment, and leachate water was collected twice (days 0 and 54). The extractability (with NH4NO3) of cationic TEs was decreased in the (acidic) Planosol and Cambisol after wcBC application, whereas in the (neutral) Chernozem it hardly changed. In contrast, anionic TEs were mobilized in all three soils, which resulted in higher anion concentrations in the leachates. The application of wcBC had no effect on Al and Pb in the mustard plants, but increased their B and Mo concentrations and decreased their Cd, Cu and Mn concentrations. A two-way analysis of variance showed significant interactions between wcBC application rate and soil type for most TEs, which indicates that different soil types may react differently upon wcBC application. Correlation and partial correlation analyses revealed that TE behavior was primarily related to soil pH, whereas the involvement of other factors such as electrical conductivity (EC), organic carbon (OC) content and dissolved organic carbon (DOC) was found to be more soil and TE-specific. The application of wcBC may be a useful strategy for the remediation of soils with elevated levels of cationic TEs, but could lead to deficiencies of cationic micronutrients and enhance short-term translocation of anionic TEs towards the groundwater at high leaching rates.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Science of The Total Environment - Volume 481, 15 May 2014, Pages 498-508
نویسندگان
, , , , , , , ,