کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6388923 1628078 2014 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Responses of nutrient dynamics in barley seedlings to the interaction of salinity and carbon dioxide enrichment
ترجمه فارسی عنوان
پاسخ دینامیک مواد مغذی در نهال های جو به تعامل شور و غلظت دی اکسید کربن
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک بوم شناسی، تکامل، رفتار و سامانه شناسی
چکیده انگلیسی
The effects of elevated CO2 on the content of several nutrients in plants have been well studied, but few studies have investigated plant nutrient dynamics under future environmental conditions, which are expected to include elevated CO2 and elevated soil salt concentrations. This study investigated whether high salt and CO2 conditions, singly or in combination, might affect nutrient dynamics, and the underlying mechanisms. We measured macro- and micronutrient uptake and translocation rates, nutrient content and concentrations in whole seedlings and in each plant organ. We estimated whole-plant nutrient use efficiencies in barley subjected to 0, 80, 160, or 240 mM NaCl and grown at either 350 (ambient) or 700 (elevated) μmol mol−1 CO2. Under non-saline conditions, plants grown at elevated CO2 adjusted their root size and activity to change nutrient uptake and transport efficiency in response to the demand for a given nutrient. Under high saline conditions, salt stress reduced K, Ca, N, B, and S uptake rates and concentrations in tissues, which caused growth reduction. Nevertheless, barley had the ability to increase the selectivity of K over Na, and Ca over Na. Under combined conditions of salt stress and elevated CO2, barley seedlings were able to maintain higher uptake and translocation rates of almost all nutrients. This ability allowed the plants to adapt to higher demands under elevated CO2; they could grow more rapidly by allocating more C to root growth and by increasing active nutrient uptake and translocation. Our results indicated that salinity generally increased nutrient use efficiency under both CO2 conditions. However, we found no consistent evidence that nutrient use efficiency was affected by CO2 concentration, either under non-saline or saline conditions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Environmental and Experimental Botany - Volume 99, March 2014, Pages 86-99
نویسندگان
, , , ,