کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6452571 1418068 2016 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The photobleaching of the free and encapsulated metallic phthalocyanine and its effect on the photooxidation of simple molecules
ترجمه فارسی عنوان
عکاسی از فتالوسیانین فلزی آزاد و محصور شده و اثر آن بر عکس اکسیداسیون مولکول های ساده
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی بیو مهندسی (مهندسی زیستی)
چکیده انگلیسی


- The encapsulation decreases the photobleaching but do not prevent the photodegradation.
- The photobleaching can reduce the efficacy of the encapsulated phthalocyanine.
- The higher solubility of the phthalocyanine seems to increase its photodegradation.
- Different size of nanoparticles did not influence the photosensitizer photobleaching.

The photobleaching of an unsubstituted phthalocyanine (gallium(III) phthalocyanine chloride (GaPc)) and a substituted phthalocyanine (1,4-(tetrakis[4-(benzyloxy)phenoxy]phthalocyaninato) indium(III) chloride (InTBPPc)) was monitored for the free photosensitizers and for the phthalocyanines encapsulated into nanoparticles of PEGylated poly(D,L-lactide-co-glycolide) (PLGA-PEG). Phosphate-buffered solutions (PBS) and organic solutions of the free GaPc or the free InTBPPc, and suspensions of each encapsulated photosensitizer (2-15 μmol/L) were irradiated using a laser diode of 665 nm with a power of 1-104 mW and a light dose of 7.5 J/cm2. The relative absorbance (RA) of the free GaPc dissolved in 1-methyl-2-pyrrolidone (MP) decreased 8.4 times when the laser power increased from 1 mW to 104 mW. However, the free or encapsulated GaPc did not suffer the photobleaching in PBS solution. The RA values decreased 2.4 times and 22.2 times for the free InTBPPc dissolved in PBS solution and in dimethylformamide (DMF), respectively, but the encapsulated InTBPPc was only photobleached when the laser power was 104 mW at 8 μmol/L. The increase of the free GaPc concentration favored the photobleaching in MP until 8 μmol/L while the increase from 2 μmol/L to 5 μmol/L reduced the photodegradation in PBS solution. However, the photobleaching of the free InTBPPc in DMF or in PBS solution, and of each encapsulated photosensitizer was not influenced by increasing the concentration. The influence of the photobleaching on the capability of the free and encapsulated GaPc and InTBPPc to photooxidate the simple molecules was investigated monitoring the fluorescence of dimethylanthracene (DMA) and the tryptophan (Trp). Free InTBPPc was 2.0 and 1.8 times faster to photooxidate the DMA and Trp than it was the free GaPc, but the encapsulated GaPc was 3.4 times more efficient to photooxidize the Trp than it was the encapsulated InTBPPc due to the photodegradation suffered by the encapsulated InTBPPc. The participation of the singlet oxygen was confirmed with the sodium azide in the photobleaching of all free and encapsulated photosensitizer, and in the photooxidation of the DMA and Trp. The asymmetry of InTBPPc increased the solubility of the free compound, decreasing the aggregation state of the photosensitizer and favoring the photobleaching process. The encapsulation shows capability in decreasing the photobleaching of both photosensitizers but the confocal micrographs showed that the increase of the solubility favored the InTBPPc photobleaching during the acquisition of optical cross section.

Graphical Abstract

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Photochemistry and Photobiology B: Biology - Volume 165, December 2016, Pages 10-23
نویسندگان
, , , , , , ,