کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6458105 1420865 2017 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Effects of warming and increased precipitation on net ecosystem productivity: A long-term manipulative experiment in a semiarid grassland
ترجمه فارسی عنوان
اثرات گرم شدن و افزایش بارندگی بر بهره وری اکوسیستم خالص: یک آزمایش غربالگری طولانی مدت در یک مراتع نیمه خشک
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات علم هواشناسی
چکیده انگلیسی


- Gross productivity determines carbon balance in a semiarid grassland ecosystem.
- Both GPP and ER are equally decreased by warming, leading to a neutral change in NEP.
- Increased precipitation stimulates GPP more than ER, resulting in an enhanced NEP.
- The linear relationships of NEP with GPP and ER are not altered by warming.
- The GPP dependence of NEP change is strengthened by increased precipitation.

The balance between ecosystem carbon dioxide (CO2) uptake and release determines the level of carbon (C) sequestration in terrestrial ecosystems and its potential impact on CO2 concentration in the atmosphere. However, how changes in temperature and precipitation will affect the relationships of net ecosystem productivity (NEP) with gross primary productivity (GPP) and ecosystem respiration (ER) remains unclear. In this study, a nine-year field manipulative experiment was conducted with elevated temperature and increased precipitation in a semiarid steppe of Inner Mongolia, China. Experimental warming reduced GPP and ER by almost the same amount, leading to a slight change in NEP (−0.16 μmol m−2 s−1), whereas increased precipitation stimulated GPP more than ER during the growing seasons, resulting in an enhanced NEP (+0.63 μmol m−2 s−1). In addition, seasonal patterns of ecosystem C fluxes and the NEP-GPP or NEP-ER relationships were not altered by experimental warming. However, increased precipitation delayed the peak of GPP during the growing seasons and enhanced the correlation between NEP and GPP in the steppe ecosystem. The enhanced control of GPP over NEP under the increased precipitation suggests that ecosystem C sequestration is attributed more to C uptake than C release when water availability is improved in the semiarid grassland. Our findings provide an insight into the response mechanism of ecosystem C flux to warming and precipitation change in semiarid grasslands, and facilitate the projection of terrestrial ecosystem C dynamics and climate feedbacks in the future.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Agricultural and Forest Meteorology - Volume 232, 15 January 2017, Pages 359-366
نویسندگان
, , , , , , , ,