کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
69519 | 48777 | 2015 | 7 صفحه PDF | دانلود رایگان |

• Chenodeoxycholic acid esters were prepared by an enzymatic approach.
• The heterologous Rhizopus oryzae lipase, immobilized on Octadecyl Sepabeads was the best biocatalyst.
• The influence of various reaction parameters and biocatalyst recycling were studied.
• Conversion of chenodeoxycholic acid was optimized using the response surface methodology and a central composite rotatable design.
A lipase-catalyzed preparation of ethyl and stearyl esters of chenodeoxycholic acid is described. Stearyl chenodeoxycholate is a new product and both bile acid esters were prepared through an enzymatic approach for the first time. The heterologous Rhizopus oryzae lipase, immobilized on two different supports proved to be an efficient catalyst, even more active than Candida antarctica lipase, in the esterification reaction using a complex substrate such as a bile acid. The immobilization of the enzyme on Octadecyl Sepabeads at pH 7 and 25 °C was the best choice to catalyze the esterification reaction. The influence of various reaction parameters, such as nature of the alcohol, alcohol:substrate ratio, enzyme:substrate ratio, solvent and temperature, was evaluated. Using the response surface methodology and a central composite rotatable design, the conversion of stearyl chenodeoxycholate was optimized by means of the study of the effect of enzyme:substrate ratio and alcohol:substrate ratio. The value 20 for ratios (E/S) and (A/S) was predicted as the optimal value to reach the maximum conversion. However, including economic aspects these ratios can be reduced up to 15. The well-known advantages of biocatalysis and the activity shown by the immobilized heterologous lipase make the reported procedure a convenient way to prepare chenodeoxycholic esters.
Figure optionsDownload as PowerPoint slide
Journal: Journal of Molecular Catalysis B: Enzymatic - Volume 118, August 2015, Pages 36–42