کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
77501 49283 2016 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Imbalanced charge carrier mobility and Schottky junction induced anomalous current-voltage characteristics of excitonic PbS colloidal quantum dot solar cells
ترجمه فارسی عنوان
تحرک نامتوازن حامل بار و ویژگی‌های جریان ولتاژ ناشی از اتصال شاتکی غیرعادی سلول های excitonic PBS کلوئیدی نقطه کوانتومی خورشیدی
کلمات کلیدی
سلول های خورشیدی نقطه کوانتومی کلوئیدی ؛ فتوولتائیک؛ اکسایتون؛ دیود شاتکی؛ ناهمگون
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی کاتالیزور
چکیده انگلیسی


• Anomalous I-V curves were found in a colloidal quantum dot solar cell.
• A hopping charge carrier transport mechanism and a double-diode model were developed.
• A novel Einstein relation valid for hopping transport was introduced and validated
• Imbalanced hole mobilities and Schottky diode contribute to anomalous I-V curves.
• Open-circuit voltage is limited by charge-transfer states at the heterojunction.

Anomalous current-voltage (I-V) characteristics, as reported with increasing frequency, can significantly compromise the energy conversion efficiency of colloidal quantum dot (CQD) solar cells. This paper applied a purely hopping transport model rather than the traditional Schottky-diode equation to interpret the anomalous I-V curves measured in CQD solar cells with a structure: ITO/ZnO/PbS-TBAI QD/PbS-EDT QD/Au. Anomalous I-V curves were found at temperatures below 300 K. A double-diode-equivalent electric circuit was developed for the quantitative analysis of these anomalous I-V curves, yielding multiple hopping transport parameters, such as hopping diffusivity, diffusion length, mobility, and lifetime. Quantitative analysis revealed that the imbalanced charge carrier mobility in the carrier transport (PbS-TBAI) and extraction (PbS-EDT) layers, as well as the existence of a reverse Schottky diode at the PbS-EDT/Au interface, played key roles in the formation of the anomalous I-V curves. Furthermore, charge-transfer (CT) states, located at the ZnO/PbS-TBAI interface, were found to reduce the CQD solar cell open-circuit voltage through radiative and non-radiative recombination of excitons. A modified Einstein equation was also validated, further proving the presence of a Schottky barrier and pointing to a rate determining interface for the I-V behaviors of our solar cells.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Solar Energy Materials and Solar Cells - Volume 155, October 2016, Pages 155–165
نویسندگان
, , , , , ,