کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
81521 158320 2015 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Effects of in-situ and reanalysis climate data on estimation of cropland gross primary production using the Vegetation Photosynthesis Model
ترجمه فارسی عنوان
اثرات داده های هواشناسی در محل و مجدد برآورد اولیه تولید ناخالص زمین های کشاورزی با استفاده از مدل فتوسنتزی گیاهی
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات علم هواشناسی
چکیده انگلیسی


• The 8-day NARR air temperature was consistent with in-situ observations.
• The 8-day NARR downward shortwave radiation showed a systematically positive bias.
• The NARR caused an overestimation of the VPM-based GPP estimates.

Satellite-based Production Efficiency Models (PEMs) often require meteorological reanalysis data such as the North America Regional Reanalysis (NARR) by the National Centers for Environmental Prediction (NCEP) as model inputs to simulate Gross Primary Production (GPP) at regional and global scales. This study first evaluated the accuracies of air temperature (TNARR) and downward shortwave radiation (RNARR) of the NARR by comparing with in-situ meteorological measurements at 37 AmeriFlux non-crop eddy flux sites, then used one PEM – the Vegetation Photosynthesis Model (VPM) to simulate 8-day mean GPP (GPPVPM) at seven AmeriFlux crop sites, and investigated the uncertainties in GPPVPM from climate inputs as compared with eddy covariance-based GPP (GPPEC). Results showed that TNARR agreed well with in-situ measurements; RNARR, however, was positively biased. An empirical linear correction was applied to RNARR, and significantly reduced the relative error of RNARR by ∼25% for crop site-years. Overall, GPPVPM calculated from the in-situ (GPPVPM(EC)), original (GPPVPM(NARR)) and adjusted NARR (GPPVPM(adjNARR)) climate data tracked the seasonality of GPPEC well, albeit with different degrees of biases. GPPVPM(EC) showed a good match with GPPEC for maize (Zea mays L.), but was slightly underestimated for soybean (Glycine max L.). Replacing the in-situ climate data with the NARR resulted in a significant overestimation of GPPVPM(NARR) (18.4/29.6% for irrigated/rainfed maize and 12.7/12.5% for irrigated/rainfed soybean). GPPVPM(adjNARR) showed a good agreement with GPPVPM(EC) for both crops due to the reduction in the bias of RNARR. The results imply that the bias of RNARR introduced significant uncertainties into the PEM-based GPP estimates, suggesting that more accurate surface radiation datasets are needed to estimate primary production of terrestrial ecosystems at regional and global scales.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Agricultural and Forest Meteorology - Volume 213, November 2015, Pages 240–250
نویسندگان
, , , , , , , ,