کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8553182 1562580 2018 23 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
In vitro evaluation of structural analogs of diallyl sulfide as novel CYP2E1 inhibitors for their protective effect against xenobiotic-induced toxicity and HIV replication
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم محیط زیست بهداشت، سم شناسی و جهش زایی
پیش نمایش صفحه اول مقاله
In vitro evaluation of structural analogs of diallyl sulfide as novel CYP2E1 inhibitors for their protective effect against xenobiotic-induced toxicity and HIV replication
چکیده انگلیسی
Diallyl sulfide (DAS) has been shown to prevent xenobiotic (e.g. ethanol, acetaminophen) induced toxicity and disease (e.g. HIV-1) pathogenesis. DAS imparts its beneficial effect by inhibiting CYP2E1-mediated metabolism of xenobiotics, especially at high concentration. However, DAS also causes toxicity at relatively high dosages and with long exposure times. Therefore, the goal of the current study was to investigate the structural analogs of DAS for their improved toxicity profiles and their effectiveness in reducing xenobiotic-induced toxicity and HIV-1 replication. Previously, we identified commercially available analogs that possessed CYP2E1 inhibitory capacity greater than or equal to that of DAS. In this study, we evaluated the toxicity and efficacy of these analogs using hepatocytes, monocytes, and astrocytes where CYP2E1 plays an important role in xenobiotic-mediated toxicity. Our results showed that thiophene, allyl methyl sulfide, diallyl ether, and 2-prop-2-enoxyacetamide are significantly less cytotoxic than DAS in these cells. Moreover, these analogs reduced ethanol- and acetaminophen-induced toxicity in hepatocytes and HIV-1 replication in monocytes more effectively than DAS. Overall, our findings are significant in terms of using these DAS analogs as a tool in vitro and in vivo, especially to examine chronic xenobiotic-induced toxicity and disease pathogenesis that occurs through the CYP2E1 pathway.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Toxicology Letters - Volume 292, August 2018, Pages 31-38
نویسندگان
, , ,