کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8901869 | 1631948 | 2018 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
On the local convergence study for an efficient k-step iterative method
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper is devoted to a family of Newton-like methods with frozen derivatives used to approximate a locally unique solution of an equation. The methods have high order of convergence but only using first order derivatives. Moreover only one LU decomposition is required in each iteration. In particular, the methods are real alternatives to the classical Newton method. We present a local convergence analysis based on hypotheses only on the first derivative. These types of local results were usually proved based on hypotheses on the derivative of order higher than two although only the first derivative appears in these types of methods (Bermúdez et al., 2012; Petkovic et al., 2013; Traub, 1964). We apply these methods to an equation related to the nonlinear complementarity problem. Finally, we find the most efficient method in the family for this problem and we perform a theoretical and a numerical study for it.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 343, 1 December 2018, Pages 753-761
Journal: Journal of Computational and Applied Mathematics - Volume 343, 1 December 2018, Pages 753-761
نویسندگان
S. Amat, I.K. Argyros, S. Busquier, M.A. Hernández-Verón, E. MartÃnez,