کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8902028 | 1631953 | 2018 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Grey-related least squares support vector machine optimization model and its application in predicting natural gas consumption demand
ترجمه فارسی عنوان
کمترین مربعات مربوط به خاکستری از مدل بهینه سازی ماشین بردار و کاربرد آن در پیش بینی تقاضای مصرف گاز طبیعی پشتیبانی می کند
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
تجزیه و تحلیل مربوط به خاکستری، کمترین مربعات از ماشین بردار پشتیبانی می کند، بهینه سازی ذرات ذرات، تقاضای گاز طبیعی،
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
چکیده انگلیسی
Predicting energy demand is of great significance for governments to formulate energy policies and adjust industrial structures. Energy data, such as demand of natural gas, are small samples. In this paper, data with small sample size, nonlinearity, randomness and fuzzy influence factors are considered. A least squares support vector machine model based on grey related analysis (GRA-LSSVM) is proposed, and weighted adaptive second-order particle swarm optimization algorithm (WASecPSO) is designed to optimize the model's parameters. The second-order particle swarm optimization (SecPSO) algorithm updates particles velocity and position weights dynamically, which can balance global search ability and local improvement, and further improve the accuracy of optimization. In addition, the GRA-LSSVM optimized by the WASecPSO algorithm predicts the annual consumption of natural gas in China. The results show that GRA-LSSVM has better generalization ability and training effect, and GRA-LSSVM optimized by WASecPSO algorithm has higher prediction accuracy than PSO algorithm and SecPSO algorithm optimized model.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational and Applied Mathematics - Volume 338, 15 August 2018, Pages 212-220
Journal: Journal of Computational and Applied Mathematics - Volume 338, 15 August 2018, Pages 212-220
نویسندگان
Yong-Hong Wu, Hui Shen,